
Constructing Verification Models of Nonlinear Simulink Systems via
Syntactic Hybridization*

Nikolaos Kekatos1, Marcelo Forets1 and Goran Frehse1

Abstract— In this paper, we present a methodology that
facilitates the integration of formal verification techniques into
model-based design. The focus is on set-based reachability
analysis and on control systems that are described by hybrid
dynamics and nonlinear components. Starting with a standard
simulation model, e.g., in MATLAB/Simulink, we transform
it into an equivalent verification model, formally a network of
hybrid automata, in the SX format used by several reachability
tools. A major obstacle here is that highly scalable reachability
algorithms and tools exist for piecewise affine (PWA) dynamical
models, but not for nonlinear ones. To obtain PWA over-
approximations of nonlinear dynamics, we use an abstraction
method known as hybridization. It consists in partitioning
the state-space into a set of domains, and for each domain,
approximating the nonlinear dynamics by simpler ones plus
nondeterministic inputs to account for the abstraction error.
Existing hybridization procedures operate on the composed
(flattened) system, so the number of partitions is exponential
in the number of variables. This quickly leads to intractably
large models, even for small systems. To mitigate this problem,
we decompose the original dynamics and carry out the state-
space partitioning and PWA approximation on the components.
The number of partitions in each PWA component is at most
quadratic in the abstraction error so that an explosion in the
number of partitions is largely avoided. Since the SX format
can handle templates, several components may share the same
abstraction. The result is a highly compact model that retains
the modular structure of the original simulation model. If only
a small subset of the partitions is reachable, the bottleneck
of having excessively large PWA models can be avoided by
composing the model on-the-fly during the reachability analysis.

I. INTRODUCTION

In model-based design (MBD), the plant and its controller
are designed based on a model, typically within a simu-
lation environment like MATLAB/Simulink. Any kind of
nondeterminism in the system, like disturbances, measure-
ment noise, parameter uncertainties, user input, or operating
conditions, may have adverse effects on the performance.
These effects can be difficult to predict during the design
step. Therefore, the system is typically tested by simulating
a large number of trajectories, each with a different choice for
the nondeterministic quantities, and checking whether they
satisfy the requirements. This process is generally incomplete
since the number of different choices is prohibitively large
or even infinite. Therefore, it can be hard to say with high
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confidence whether a requirement is truly satisfied under all
circumstances. Formal verification attempts to guarantee that
requirements are satisfied through a rigorous mathematical
analysis of the system. A widely used verification technique
is set-based reachability analysis, which exhaustively simu-
lates families of trajectories using geometric operations on
sets.

There are two main obstacles to applying reachability
analysis in MBD. First, the simulation model needs to be
converted to a suitable formal model, such as a hybrid
automaton. Second, the model must be amenable to existing
reachability algorithms, in particular in terms of scale. Highly
scalable algorithms are known for piecewise-affine (PWA)
dynamical systems, but not for more complex nonlinearities.
While a large class of nonlinearities can be approximated
arbitrarily well by a PWA system, the resulting models can
be very large, again running into scalability problems.

In this paper, we propose an approach to transform a
simulation model into a compact, i.e., relatively small, ver-
ification model with PWA dynamics. To achieve this, we
decompose the nonlinear system and perform the transfor-
mation component-wise. The resulting model can be fed to
the verification tool SpaceEx [1], or translated into formats
for other verification tools using the HyST tool [2]. Since
SpaceEx composes the model on-the-fly during the analysis,
only the reachable partitions of the PWA approximations are
instantiated. Figure 1 illustrates the difference between the
traditional hybridization methods and the proposed one, for
the case where the original nonlinear model is described
in Simulink. Classical hybridization techniques that rely
on state-space partitioning [3] create a PWA model with
O(1/`n) locations, where ` is the mesh size, and n is the
dimension of state-space. During the reachability analysis,
O(T/δ) locations are visited, where δ is the minimum dwell
time and T the global time horizon. On the contrary, with
syntactic hybridization, we get m PWA components, where
m is the number of nonlinearities, and the total number of
locations is O(m/`2). The non-reachable locations need not
be instantiated.

The rest of this paper is organized as follows. In Section II,
we present the related literature. In Section III, we describe
the steps of our proposed methodology and apply them to a
simple Simulink model example. In Section IV, we introduce
the compositional syntactic hybridization and apply it in
an industrial case study. Finally, we draw conclusions and
perspectives in Section V.
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Fig. 1: Constructing verification models from a Simulink
system, with m = 3 nonlinear blocks. The syntactic ap-
proach can lead to approximations of smaller size and less
instantiated locations.

II. RELATED WORK

The translation of Simulink models into modeling for-
malisms, for which formal verification tools can be applied,
has attracted considerable interest; a comprehensive survey
can be found at [4]. There exist translators from Simulink
to Lustre [5], NuSMV model checker [6] and BIP [7].
However, all these tools apply discrete verification and do
not consider continuous-time models. Filipovikj et al. [8]
transformed Simulink models into the input language of UP-
PAAL Statistical Model checker. UPPAAL supports hybrid
automata. However, it either restricts their continuous parts to
simple dynamics or applies the Euler integration method. Its
inaccurate integration results are therefore not conservative.
Zuiliani et al. [9] presented a statistical model checking
approach that is applicable on Simulink/Stateflow models.
Stanley Bak et al. introduced a translation process from
Simulink/Stateflow to hybrid automata in [10]. Both these
works focus entirely on Stateflow diagrams and require the
transformation of the Simulink model into a Stateflow one.
However, this is not feasible for most large-scale systems
designed with Simulink.

The translation of a Simulink/Stateflow model to a hybrid
automaton is supported by the tools HyLink [10] and GreAT
[11]. However, these tools do not allow hierarchical modeling
and can be applied to a small subset of Simulink blocks.
Recently, Minopoli and Frehse presented SL2SX, a semi-
automated tool for translation of Simulink models into hybrid
automata [12]. The translator supports a large number of

Simulink blocks, but is restricted by SpaceEx limitation to
handle piecewise constant and affine dynamics. As a result,
the user should analyze the missing blocks (unsupported or
nonlinear) and decide how to replace or approximate them.

It is well-known that non-compositional methods for PWA
approximations are not computationally efficient for complex
systems, since an acceptable accuracy requires a very large
number of pieces in the piecewise-affine approximation.
Very recently, [13] presented an experimental comparison
of a compositional approach, similar to that presented in
this paper (called nested approximation there), against a
simplex-partitioning PWA hybridization, showing that the
former scales much better than the latter for increasing de-
mands on precision. The compositional PWA-approximation
is presented informally, and the paper does not discuss the
implications in terms of the model size, nor preserving this
compositionality in the generated model. The complexity of
the approximation can further be reduced by focusing on a
set of reference trajectories, as done in [14].

Much work has been done towards the verification of
Simulink models [15], [4]. A promising group of approaches
can be categorized as verification by simulation [16]. Donzé
presented a MATLAB/Simulink based tool, Breach, which
performs simulation-based verification (approximate reacha-
bility analysis) and conducts efficient signal monitoring of
properties and requirements. Breach facilitates the computa-
tion and property investigation of large sets of trajectories,
but it still cannot provide absolute confidence in the simu-
lation results. Another MATLAB toolbox that is designed
to be seamlessly integrated into the model based design
process of MATLAB/Simulink is S-Taliro [17]. S-Taliro
conducts fast and efficient simulations, but intrinsically relies
on gridding, restricting the formal focus on falsification.
The MATLAB/Simulink-based tool C2E2 [18] generalizes
simulation trajectories to families of trajectories by deriving
a neighborhood around the simulated trajectory in which all
trajectories have equivalent behavior.

All the above verification by simulation approaches have
in common that the set of initial states must be sampled.
Since the number of required samples can increase ex-
ponentially with the number of state variables, this can
limit the approach to systems with low-dimensional initial
states. Also, simulation-based verification techniques can be
used to verify properties for a bounded-time horizon, but
cannot be applied for unbounded time. The tool HySon
[19] performs set-based simulation directly on a Simulink
model, and allows to compute a good approximation of the
set of all possible executions. However, the technical details
suggest that it may have its drawbacks when analyzing hybrid
systems for an unbounded switching horizon. In addition,
HySon is not publicly available.

The main contribution of this work is to introduce a
compositional syntactic hybridization method. This method
is suitable for Simulink models, facilitates the construction
of verification models and takes advantage of the on-the-
fly composition of hybrid systems that is supported by the
SpaceEx platform.



III. CONSTRUCTING VERIFICATION MODELS

In this section, we present the steps of our approach
(portrayed in Fig. 2). To clearly illustrate our methodology,
the proposed steps are applied on a rotational pendulum
model.
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Fig. 2: Methodology for constructing verification models;
input: Simulink, output: PWA decomposed model (left). The
syntactic hybridization steps are presented (right). Each step
(in Latin) is analyzed in the following sections.

A. Model-based design with Simulink

The modeling and the control design is undertaken with
MATLAB/Simulink, through the interconnection of blocks,
signals, and systems. Simulink [20] is a graphical program-
ming environment for modeling, simulating and analyzing
dynamical systems. It enables hierarchical modeling, keeping
functionally related models together, and simplifying the
overall design process by means of abstraction.

Example III.1 The Simulink model for the rotational pen-
dulum is shown in Fig 3. The system produces simulation
traces of the pendulum angle over time, when it is released
from rest.

Fig. 3: Simulink model for the rotational pendulum

Simulink relies on must semantics, also known as urgent
or as-soon-as-possible (ASAP) semantics. That means that
discrete events/transitions occur as soon as a given condition
(guard) is satisfied. On the other hand, most formal tools
for reachability analysis use may semantics, demonstrating
a broader set of behaviors. For the purposes of this paper,
we consider that SL2SX takes care of these semantic differ-
ences [21].

B. Estimation of the signal range

In this step, the goal is to get bounds on the behavior (min,
max) of the input signals of the Simulink blocks that cannot
be described by linear or hybrid dynamics. The smaller the
ranges of the signals, the smaller the number of locations
that is required by the PWA abstraction, given a desired
error bound. There are different ways to estimate them, such
as simulations, interval analysis, or Monte Carlo methods.
In this paper, we use the Breach [16] toolbox for a (not
necessarily conservative) estimation of the signal range.

Note that the signal range serves only as an indication for
the hybridization step that is presented in the next section.
The approximation is equipped with out-of-range scopes.
So, in case the range is shown to be insufficient during
reachability computations, it is revised (enlarged).

Example III.2 For the rotational pendulum, we estimate the
range of the signal that acts as an input in the nonlinear
block. The range is then enlarged by a percentage. A set
of simulations for uncertain initial conditions and a Sobol
distribution (quasi-random number sequence) are shown in
Fig. 4, where we plot the angle θ as a function of time.

Fig. 4: Range estimation of the input signal of the nonlinear
block (sin) of the rotational pendulum θ (rad) vs. time (s);
conducted with Breach simulations.

C. Translation to SX format

The next step is to translate the Simulink model into
an equivalent SpaceEx [1] model. SpaceEx models respect
the semantics of SX grammar; the format is similar to
the standard hybrid automata, syntactically extended with
hierarchy and templates. Formally, a SpaceEx model is the
tuple SX = 〈Comp,Bind〉, where Comp represents the



components (base or network), and Bind is a relation that as-
sociates each network component with a set of components.
A base component corresponds to a single hybrid automaton,
whereas a network component corresponds to the parallel
composition of several hybrid automata.

In the context of this work, we use the SL2SX [12]
translator to handle the mechanical, but error-prone, aspects
of deriving a hybrid automaton interpreted by SpaceEx from
a Simulink model. The translator accepts a Simulink model
that is saved in XML format and generates as an output a
network of hybrid automata in SX format. The translation
preserves most of the structural aspects of the Simulink
diagram, such as the names, hierarchy and graphical posi-
tions. The tool accepts several continuous-time, logical and
arithmetical blocks, as well as blocks with discontinuous
dynamics (e.g. switches).

Example III.3 Applying the SL2SX translator to the
Simulink model of the rotational pendulum, we obtain a
SpaceEx model with base and network components. The top-
level network component is shown in 5. The generated model
can be easily compared with the Simulink diagram, due to
the preservation of the structure and the names of blocks and
variables. We have highlighted in red the nonlinear block,
which is considered in the next subsection.

Fig. 5: SpaceEx model (SX) of the rotational pendulum
constructed by the translator. This is the network component,
and we highlight, in red, the block which corresponds to a
trigonometric function.

D. Hybridization

This step aims to generate PWA approximations for the
Simulink blocks that are not handled automatically by the
translator, either because no exact translation is available
(e.g. nonlinearities) or because translation cannot be applied
(e.g. Embedded MATLAB Function). The PWA representa-
tion is a special class of hybrid automata admitting both dis-
crete events, i.e. jumps, switches, and continuous dynamics
in the form of piecewise affine functions.

After computing PWA approximations for the nonlinear
Simulink blocks, we integrate them with the original XML
file (constructed in the previous step). In this way, we
get the complete SpaceEx model in SX format, combining
the exactly translated blocks from SL2SX and the over-
approximated blocks from syntactic hybridization. The re-
sulting model can then be fed into the SpaceEx verification
platform.

Example III.4 As for the rotational pendulum, the non-
linear function (sin) of the rotational pendulum is over-
approximated by a PWA function. We consider the lineariza-
tion domains to be boxes. The approximation errors are
computed for each domain (location in the resulting hybrid
automaton) and are added in the form of non-deterministic
input in the invariants. The constructed SpaceEx base com-
ponent is shown in Fig. 6.

Fig. 6: PWA of the nonlinear component (sin) of the
rotational pendulum. Only 6 locations are shown (out of
40). Here the non-deterministic input w1 represents the
approximation error.

E. Reachability analysis with SpaceEx

The reachability analysis is undertaken by one of the
SpaceEx Analysis algorithms (e.g. STC, LGG or PHAVer).
SpaceEx composes the individual components on the fly,
instantiating only the part of the model that is relevant.
SpaceEx supports safety verification problems, but it is also
possible to check more complicated properties or control
specifications. Different ways to transform control objectives
to reachability problems are presented in [22].

Example III.5 Computing the reachable sets of the rota-
tional pendulum (for the STC SpaceEx scenario, a flowpipe
tolerance of 0.01, a global time horizon of 1s), we get the
phase portrait shown in Fig. 7. The pendulum is released
from the most upward position with an uncertain but bounded
initial speed.

Fig. 7: Reachability results of the rotational pendulum for
a global time horizon of 1s. Phase portrait of the angular
position (rad) and angular speed (rad/s).



IV. COMPOSITIONAL SYNTACTIC
HYBRIDIZATION

The objective of the compositional syntactic hybridization
is to approximate in a compositional manner the original
model with a hybrid automaton with PWA dynamics. Three
main steps are involved: syntactic decomposition, replacing
the original system by an equivalent one with extra variables;
hybridization, constructing a PWA approximation for each
domain and providing a sound over-approximation of the
original system by adding an error term; and finally HA
composition, where the PWA model is transformed into a
hybrid automaton in SX format. The two first steps are
introduced in Section IV-A, where the mathematical details
are presented. The third step is presented in Section IV-B
and it is implementation dependent.

A. Syntactic PWA Aprroximation

In the following paragraphs, we explain the technical
details involved, considering a nonlinear differential equation

dx

dt
= f(x), x ∈ Rn. (1a)

This ODE is assumed to be regular (f is Lipschitz of constant
L > 0 over the state space X ⊂ Rn). The method can
be extended to semi-explicit differential-algebraic equations
(DAE’s).

1) Syntactic Decomposition: The decomposition consists
in constructing a new system where nonlinear terms are
replaced by auxiliary variables,

dx

dt
= g(x, y), y ∈ Rm, (2a)

y = h(x, y). (2b)

Here y is a vector of auxiliary variables, g(x, y) ∈ Rn
is linear in both x and y, and h(x, y) ∈ Rm includes all
the nonlinear terms, m, of the original system, as explained
in detail below. Notice that we have replaced the original
system by a linear ODE in a higher-dimensional space,
Rn+m, coupled with a set of nonlinear algebraic constraints.
Moreover, this step is exact.

Furthermore, let Vi ⊆ {x1, . . . , xn} for i ∈ {1, . . . ,m}
be the variables involved in the i-th nonlinearity, and let
pi = |Vi| denote the number of variables in such expression.
It should be noted that with a sufficient number of auxiliary
variables, we can assume that hi(x) satisfies 1 ≤ pi ≤ 2 for
all i.

2) PWA Approximation: We consider a set of non-
overlapping domains, Rij , which cover the operational range
of the variables in Vi, where j is a label for each individual
domain. For each Rij , we perform a PWA linearization of
hi. Hence, (2a)-(2b) is replaced by

dx

dt
= g(x, y), y ∈ Rm, (3a)

y = ĥ(x, y), (3b)

where ĥ is a vector of PWA functions.

Let op denote the operating point in the domain Rij . Using
Taylor’s formula with Lagrange remainder, for each 1 ≤ i ≤
m,

ĥi(x, y) = hi,op +
∂hi
∂x

∣∣∣
op

(x− xop) +
∂hi
∂y

∣∣∣
op

(y − yop),

(4)

and

hi(x, y)− ĥi(x, y) =
1

2
(x− xop)T

∂2hi
∂x2

∣∣∣
ξ
(x− xop)+ (5)

1

2
(y − yop)T

∂2hi
∂y2

∣∣∣
ξ
(y − yop) + (x− xop)T

∂2hi
∂x∂y

∣∣∣
ξ
(y − yop),

where ξ = (ξx, ξy) ∈ Rn+m is an intermediate point in
the interval ξx ∈ {xop + a(x − xop), a ∈ [0, 1]}, and
similarly for ξy . The right-hand side of Eq. (5) is the
Lagrange remainder, whose resulting values over the domain
Ri are used to estimate the approximation error [23]. The
linearization errors εh are computed by evaluation of the
Lagrange remainder, and satisfy y = h(x, y) ∈ ĥ(x, y)⊕ εh.
In this paper, we assume that Ri are boxes. In the case of a
box, the point which minimizes the absolute value of the
Lagrange remainder is its center [24]. Several interesting
alternatives exist, notably simplices [3].

Example IV.1 For n = 4, consider the polynomial vector
field f = [x1 − x2x3x4, x1x2 − x4,−x3x4, x2 − x3]. Intro-
ducing the auxiliary variables y1 = x3x4, y2 = x1x2 and
y3 = x2y1, then g(x, y) = [x1−y3, y2−x4,−y1, x2−x3] is a
linear ODE and h(x, y) = [x3x4, x1x2, x2y1] is a nonlinear
algebraic equation of degree two with m = 3 elements.
Consider a PWA approximation, f̃ , based on a rectangular
partitioning of the state space, with elements of size ` in
each dimension. Then, f̃ leads to O(1/`4) elements, while
the PWA approximation of h only to O(m/`2) elements.

Example IV.2 Now, we consider a 9-dimensional genetic
model adapted from the one presented in [25], [26]. The
model is described by polynomial dynamics of the form,
f(x) = [3x3−x1x6, x4−x2x6, x1x6−3x3, x2x6−x4, 3x3+
5x1−x5, 5x5+3x3+x4−x6(x1+x2+2x8+1), 5x4+x2−
0.5x7, 5x7 − 2x6x8 + x9 − 0.2x8, 2x6x8 − x9]. Introducing
the auxiliary variables y1 = x1x6, y2 = x2x6, y3 =
x6x8, then g(x, y) = [3x3 − y1, x4 − y2, y1 − 3x3, y2 −
x4, 3x3 + 5x1 − x5, 5x5 + 3x3 + x4 − y1 − y2 − 2y3 −
x6, 5x4 +x2− 0.5x7, 5x7− 2y3 +x9− 0.2x8, 2y3−x9] is a
linear ODE and h(x, y) = [x1x6, x2x6, x6x8] is a nonlinear
algebraic equation of degree two with m = 3 elements.
Consider a PWA approximation, f̃ , based on a rectangular
partitioning of the state space, with elements of size ` in each
dimension. Then, f̃ leads to O(1/`9) elements, while the
PWA approximation of h only to O(m/`2) elements. Instead
of gridding a 9-dimensional state-space, we only have to
approximate with PWA functions three second order state-
spaces. This example highlights the usability of the syntactic
approach for the cases that repeated nonlinearities appear.



B. Compositional Hybridization

Through the syntactic PWA approximation, we have pro-
duced a Linear ODE with PWA algebraic constraints. In
order to feed this model to one of the available reachability
tools, we must describe it as a network of hybrid automata.
Each hybrid automaton corresponds to the PWA approxima-
tion of one nonlinearity. Each piece of the PWA approx-
imation corresponds to one location in the corresponding
automaton.

In the SX file format, used by SpaceEx and other tools, a
model consists of components, which are either hybrid au-
tomata or networks of hybrid automata. A component can be
instantiated inside a network, possibly remapping variables
to other variables or replacing them with constant values.
Note that an ODE or an algebraic constraint can be trivially
embedded in a hybrid automaton with a single location. The
ODE becomes the flow-constraint of the location and the
algebraic constraint its invariant.

Expressing the PWA approximation to this setting, the
linear ODE is modeled by a single (trivial) automaton. Each
PWA constraint yi = ĥi(x, y) corresponds to a hybrid
automaton with one location per piece. The locations of
adjacent pieces are connected through transitions. The ap-
proximation error is expressed by extra variables with range
εh, and the error threshold µ > 0 is an upper bound on the
maximum value it can take (in some chosen norm || · ||).

Example IV.3 Getting back to Example IV.2, we model the
genetic system with Simulink (see Fig. 8). The nonlinearities
correspond to products and are highlighted with different
colors. Blocks with the same color represent the same
nonlinear operator.

After translating the Simulink model and estimating the
signal ranges, we are ready to perform syntactic hybridiza-
tion on the components. As already mentioned in Section
IV-A, we don’t need to partition a 9-dimensional space, but
only to construct 3 two-dimensional PWA approximations
for the products. Note that the approximations correspond to
base components in SpaceEx and can be seen as templates
(building blocks). In this respect, it is possible to be reused.
As a result, only one SpaceEx base component would be
required to describe the three red blocks, one for the blue
blocks, and another one for the yellow blocks.

Standard algorithms for reachability analysis, such as
those inside SpaceEx, take as input a single hybrid automaton
with ODE dynamics. To go from the multi-component input
model to this form, the reachability tool performs two
operations: First, it combines the components through a
process called parallel composition. Second, it eliminates the
algebraic constraints to obtain an ODE. In principle, parallel
composition means building the product automaton, whose
locations consist of the cross-product of the locations of the
components. A model with m components of k locations
each thus has a product automaton with mk locations.
However, tools such as SpaceEx construct the product au-
tomaton on the fly, instantiating only the reachable locations.

Fig. 8: Genetic model in Simulink. Colored blocks corre-
spond to nonlinearities. Red: x1x6, cyan: x2x6 and yellow:
x6x8.

Similarly, the conversion from linear DAE to ODE is only
carried out on the instantiated locations. The conversion can
be carried out efficiently by Gauss-Jordan elimination [27].
The underlying theory is explained in [28].

Example IV.4 (continuation of example IV.3.) Conducting
reachability analysis with SpaceEx for a global time horizon
of 1s, with a flowpipe tolerance of 0.01 and the STC scenario
(octagonal directions), we compute the reachable sets, as
illustrated in Fig. 9.

Fig. 9: Reachable sets of the genetic model with SpaceEx.
The variables x1 and x2 are displayed.



In principle, the outlined procedure enables us to approxi-
mate the reachable set of the original dynamics with arbitrary
precision. Let Φ(t, x) denote the trajectory starting from x
evaluated at time t. The reachable set of the system from
a set of initial points X0 ⊆ X during the interval [0, t] is
defined as

Reach(t,X0) = {y = Φ(τ, x) : τ ∈ [0, t], x ∈ X0}. (6)

The approximate system converges to the original system, as
expressed by the following theorem.

Theorem 1 (see [29]) The Hausdorff distance between the
reachable set of (2a)-(2b) and the reachable set computed
through hybridization, (3a)-(3b), from time 0 to a final time
T > 0 satisfies

dH
(
Reachf (T,X0), Reachf̂ (T,X0)

)
≤ 2µ

L

(
eLT−1

)
, (7)

where µ is the error threshold, L is the Lipschitz constant of
the original, nonlinear function and f̂ is the PWA approxi-
mation.

C. Case Study: Wind Turbine

The wind turbine benchmark from the ARCH workshop
poses a challenging and relevant industrial model [30].
It is designed with MATLAB/Simulink and it is a large-
scale model with many nonlinearities. We used syntactic
hybridization to transform the model into an approximative
PWA one in SX format and we conducted the approximation
component-wise. Ten nonlinear blocks were approximated
and Table I presents the corresponding results. The resulting
model only has 72 locations in all components combined.
The standard hybridization would lead to an O(1/`n) num-
ber of locations. Taking into account that the dimension of
the state-space is 7 and considering 5 locations per state
variable, the standard method would yield 57 = 78125
locations. That indicates a considerable difference between
the hybridization methods in terms of the model size.

V. CONCLUSIONS

Model transformation plays an important role in bridging
the gap between industrially relevant models and verification
tools [15]. This work aims to assist the application of
hybrid system reachability tools to models designed with
MATLAB/Simulink. We propose a methodology to construct
verification models out of Simulink systems. We make use
of the SL2SX translator to handle the mechanical aspects of
the translation to hybrid automata and the Breach toolbox to
get bounds on the signal ranges. For the blocks that are not
exactly translated, e.g. nonlinearities, we propose a method,
which we call compositional syntactic hybridization.

Unlike standard state-space hybridization methods, we do
not operate over the fully composed (flattened) model, but
perform the PWA approximations component-wise. In this
way, we can obtain a significant reduction in terms of model
size. The constructed verification model consists of a network
of hybrid automata and is described in the SX format. It can
then be fed into the SpaceEx platform or other verification

No Block Type # Loc Error Bounds Info

1 Product (2D) 4 2.00 x · y
2 Division (2D) 10 2.76e-2 x/y
3 Division (1D) 2 2.01e-2 1

1+x
4 Division (2D) 4 6.98e-1 x/y
5 Product (2D) 4 25.6 x2 · y
6 Product (2D) 4 3.23 x2 · y
7 Polynomial (2D) 6 3.39 4th-order
8 Polynomial (2D) 6 12.3 4th-order
9 Embedded MATLAB 28 10.5 x2 and 1/x

10 Saturation 3 - exact
11 Read from workspace 1 - aux. variable

12 Mux, Scope - - -
13 Save to workspace - - -
14 Enables Subsystem - - -
15 Multiport Switch - - -
16 Compare to Constant - - -
17 Manual Switch - - -

TABLE I: Wind Turbine Benchmark – breakdown into
blocks. Blocks, 1-9, are approximated syntactically; the 10th

block is exactly translated; 11th is replaced by a non-
deterministic input and the rest, 12-17, are not necessary
due to semantic differences.

tools through the HYST translator. Using SpaceEx for the
reachability computations, we can take advantage of the on-
the-fly composition and instantiate only the reachable parts of
the approximation. Note that our compositional hybridization
can be applied not only to the dynamics, but also to algebraic
and initial constraints.

On an industrial benchmark, the wind turbine, our ap-
proach leads to a very compact model that is orders of
magnitude smaller than a standard hybridization model.

The next step is to improve the reachability tools so
that they can take advantage of these compositional models.
The primary objective is to instantiate as few locations and
transitions as possible during the analysis. There are three
issues to address. The first is the on-the-fly composition and
instantiation of the models, which can reduce the number
of instantiated locations of the product automaton. The
second is a compositional pre-processing of the components,
where we utilize the pre-image of the target invariant when
checking which transitions are enabled. The third direction
would be to perform compositional mapping of the initial
states. In the case of SpaceEx platform, the identification of
the initial conditions is done through enumeration. However,
enumeration of the locations of the product automaton is
an operation that does not scale. Applying compositional
reasoning would allow us to identify the initial locations and
instantiate as few locations as possible.
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